• @Kecessa@sh.itjust.works
    link
    fedilink
    English
    1310 months ago

    They offset all those emissions by the time they’ve reached like 80k km in places where electricity is produced using coal (compared to a gas vehicle that increases its total emissions as time goes) so no, he’s not right actually.

    That’s not even taking into consideration the wear on emission equipment and cars age.

    • Semi-Hemi-Demigod
      link
      fedilink
      110 months ago

      If most people replace their cars every three years they’re not getting to 80,000 km before they buy a new one.

      • @Kecessa@sh.itjust.works
        link
        fedilink
        English
        610 months ago

        Do they though?

        And it’s not as if these cars were sent to the scraper, they’re sold on the used market and replace gas cars.

        • Semi-Hemi-Demigod
          link
          fedilink
          410 months ago

          According to Mr. Bean’s original article, that’s the average length of car ownership in Britain due to the prevalence of three year leases.

          And it doesn’t matter if they’re going on the used market because there’s still another new car getting built that doesn’t have to be.

          • @racemaniac@startrek.website
            link
            fedilink
            English
            410 months ago

            Yeah, the policy causes more cars to be sold, which is also an important thing to take into account.

            But you initially said “If most people replace their cars every three years they’re not getting to 80,000 km before they buy a new one.”, and that is plain wrong, the car is not scrapped after those 3 years, so when it changes owner for the first time is irrelevant. And that 80k km is worst case scenario, that assuming all electricity is generated in the least environmental way possible, in practice it’s often <40k km that there is already a break even because not all electricity is generated by coal.

          • @sdoorex@slrpnk.net
            link
            fedilink
            English
            210 months ago

            Except that is ignoring the filtering effect of the used market. As a car ages and changes hands, it is likely to replace an older, less efficient car. How else could we replace the oldest cars that are going out of service due to being at the end of their life?

            It’s not like the people that are buying old used cars are suddenly going to afford an expensive new car. Instead, they need an affordable used car.

            • @bassad@jlai.lu
              link
              fedilink
              English
              110 months ago

              Are we sure newer cars are more efficient ? With dieselgate and recent articles about how Co2 emissions are better in lab but same on real conditions, we are allowed to have fat doubts.

    • @RobotToaster@mander.xyz
      link
      fedilink
      English
      -1
      edit-2
      10 months ago

      If like the guy further up this thread you only drive 8k km a year that’s going to take 10 years to reach parity. The Li-Ion battery may not even last that long.

      Obviously if you drive for work or commute long distances that can’t be covered by public transport then an EV makes sense, but with the expansion of WFH it may not for many.

      • @Kecessa@sh.itjust.works
        link
        fedilink
        English
        7
        edit-2
        10 months ago

        That’s 80k km if you live somewhere where electricity comes 100% from coal, where I live with hydro it’s under 20k km. You’re also making an assumption without knowing how much that 8k km emits with their gas car.

        To give an example with numbers…

        Gas car produces 5 tons of CO2 when being manufactured and then emits 1 ton a year driving 8k km

        Electric car produces 10 tons of CO2 when being manufactured then emits 0.25 tons a year driving 8k km

        After 6 ⅔ (we’ll round it up to 7) years the EV compensated for the extra CO2 required for its production and has emitted 10 + (7 x 0.25) = 11.75 tons of CO2. Meanwhile the gas car has emitted 5 + (7 x 1) = 12 tons of CO2 and the difference will keep increasing.

        As for the battery failure scare, it’s a non issue with the vast majority of models and it ignores the extra maintenance required on the gas car that also pollutes.

        • @HeyThisIsntTheYMCA@lemmy.world
          link
          fedilink
          English
          410 months ago

          We’re about 10k past that mileage where we’re supposed to be having battery issues, maybe need a replacement, with our Prius and they aren’t happening. I’ve been wondering if it was just a scare from the salesman to push me to an ICE. We’ve kept on top of the maintenance and it’s been the most reliable car I’ve ever driven. Might just be a Toyota thing tho. I set aside the money for the repair and I’m waiting, but I’d really rather spend it on hookers and blow.

          • @Kecessa@sh.itjust.works
            link
            fedilink
            English
            310 months ago

            I know that the hybrid version was/is a taxi driver favorite and some drove 600k km and the battery was still ok 🤷

            The Nissan Leaf is the biggest culprit I think, they decided not to actively cool the battery and if people drive to work, charge, go back home, charge, it cooks it…

      • @Kecessa@sh.itjust.works
        link
        fedilink
        English
        0
        edit-2
        10 months ago

        That’s the thing though, no it isn’t.

        If you continue driving a gas car it continues to generate emissions, if you switch to an electric car it offsets it’s emissions (compared to switching to another gas car or keeping the same gas car) after max 80k km and after that it’s a better car for the environment than whatever gas car you would have been driving instead and that you keep driving and that keeps increasing its carbon footprint.

        • @Ookami38@sh.itjust.works
          link
          fedilink
          English
          110 months ago

          You’re taking a useful piece of equipment, a perfectly running car, and doing what with it? Scrapping it? Reselling it? Just letting it sit? None of those make sense from a “save the planet” perspective.

          You can scrap the internal combustion car. Sure, it won’t make any more emissions itself, but it does cause demand for another EV to be manufactured RIGHT NOW, which has opportunity cost - manufacturing is expensive, monetarily and environmentally. Would this eventually even out, yeah, probably but it’d cause a lot of stress in the short term.

          Reselling it is probably the MOST environmentally friendly option, but that car is still making emissions. If the buyer of your internal combustion car already had a car, it’s the same problem as scrapping it, kicked down 1 more chain link. the emissions necessarily increase. If they didn’t already have a car, well now there’s the same combustion engine car on the road, and we made a new EV to fit demand.

          Letting the car sit is a bit of a sunk cost fallacy, I admit. The manufacturing cost of the car has already been paid, and it has useful life left in it. This is where we have to actually make a cost-benefit decision. If the car is older, yeah probably don’t drive it anymore. If it’s less than 20 years old, it probably has enough life left in it to offset the benefits of producing a new EV right now. This just feels like scrapping it, with even more junkyard requirements.

          Obviously this isn’t all on the individual level, one person doing any of these things isn’t causing any shift in demand, but if everyone suddenly started having that mentality, I don’t think it’d end well at all. Use what you have, don’t buy until you have to or comfortably can. Reuse is as important as reduce and recycle.

          • @Kecessa@sh.itjust.works
            link
            fedilink
            English
            1
            edit-2
            10 months ago

            It makes sense to resell it only if it replaces another car that pollutes more than it does, otherwise your logic only works if you ignore the fact that the gas car has a carbon footprint they keeps increasing when the electric car doesn’t (or it increases slowly enough depending on what’s used to generate electricity that it still eventually becomes carbon negative compared to continuing to use the gas car).

            • @Ookami38@sh.itjust.works
              link
              fedilink
              English
              110 months ago

              There’s a sunk cost already spent for an ICE car that’s already been produced. There’s an opportunity cost to swapping to an EV immediately. My point is simply that the situations are complicated enough that the only reasonable “one size” approach for a heuristic to balance those costs is one along the lines of “replace your ICE car when it’s reached the end of its useful life, and replace it with an EV”.

              No, this probably won’t be the best overall. That requires individualization. Someone still clinging to a 40 year old gas guzzling truck would be better off scrapping it. Someone who bought a sedan in, like, 2017, it still has a few years of well performing life in it would do best to keep it til it dies and then replace with an EV.

              • @Kecessa@sh.itjust.works
                link
                fedilink
                English
                1
                edit-2
                10 months ago

                Hence what I’m saying.

                From a purely environmental perspective the person who bought a car in 2017 that has the financial means to get a new EV car would be better off getting one, selling their 2017 to someone who drives a 2005 that would sell to someone that drives a 2000 that would send their car to the scrap yard or keep the chain going. Your analysis implies that the 2017 car gets replaced and doesn’t get sold to someone else, either the owner keeps it and doesn’t drive it or it gets sent to a scrap yard, which isn’t what happens in reality.

                The point is, it’s better to intentionally introduce a new car on the road that emits zero pollution (or close to) and that allows us to get rid of an old car that emits tons of CO2 every year even if it’s still drivable than to just wait for the old car to die to get the process going from the bottom up.

                I could make a complete mathematical breakdown to show it but I’ve basically already done it in another comment just with two cars instead of a long chain of cars.

                Funny you should mention sunk cost because it’s a sunk cost fallacy to say we shouldn’t get these cars off the road just because they’ve been produced already (as long as the total number of cars stays the same in either scenarios, just to be clear).

                • @Ookami38@sh.itjust.works
                  link
                  fedilink
                  English
                  110 months ago

                  I specifically mentioned sunk cost because it can be fallacious. I was aiming to get ahead of that. Not every sunk cost is fallacious, and that’s why I went into depth about sunk costs vs opportunity costs.

                  And again, on an INDIVIDUAL level I agree with you. Individuals don’t have that kind of impact on demand as something like a ban of ICE engines, or broad adoption of them to the point of masses of people looking to buy at the same time does.

                  Individually, buy one as soon as it makes financial sense for you, ideally when you’d be buying a car anyway.

                  Systemically, buy one when your car dies, keep your running machine for as long as possible.

                  Specifically the opportunity costs I’m referring to are manufacturing related. Right now, producing EVs is more costly than producing ICE cars, in terms of carbon footprint. If too many people adopt too quickly, it results in more being produced while the manufacturing process is still shitty.

                  There’s a problem with the “pass down the cars” thing too. At the end of that chain is still a car being decommissioned. If it’s still usable, that’s a higher net carbon footprint. A new EV still had to be produced for that chain of used car sales to go through.