monyet.cc
  • Communities
  • Create Post
  • Create Community
  • heart
    Support Lemmy
  • search
    Search
  • Login
  • Sign Up
@driving_crooner@lemmy.eco.br to Science Memes@mander.xyzEnglish • 1 year ago

answer = sum(n) / len(n)

lemmy.eco.br

message-square
127
fedilink
857

answer = sum(n) / len(n)

lemmy.eco.br

@driving_crooner@lemmy.eco.br to Science Memes@mander.xyzEnglish • 1 year ago
message-square
127
fedilink
  • @Socsa@sh.itjust.works
    link
    fedilink
    English
    53•1 year ago

    Bayesian purist cope and seeth.

    Most machine learning is closer to universal function approximation via autodifferentiation. Backpropagation just lets you create numerical models with insane parameter dimensionality.

    • @TopRamenBinLaden@sh.itjust.works
      link
      fedilink
      English
      43•1 year ago

      I like your funny words, magic man.

    • @kibiz0r@midwest.social
      link
      fedilink
      English
      8•1 year ago

      A monad is just a monoid in the category of endofunctors, after all.

      • @AnarchistArtificer@slrpnk.net
        link
        fedilink
        English
        3•1 year ago

        No, no, everyone knows that a monad is like a burrito.

        (Joke is referencing this: https://blog.plover.com/prog/burritos.html )

        • @Contravariant@lemmy.world
          link
          fedilink
          English
          3•1 year ago

          So what you’re saying is that if you put a burrito inside a burrito it’s still a burrito?

          • @AnarchistArtificer@slrpnk.net
            link
            fedilink
            English
            1•1 year ago

            https://youtu.be/2EWWL3niBWY

    • @lseif@sopuli.xyz
      link
      fedilink
      English
      8•1 year ago

      erm, in english, please !

      • @hotsox@lemmy.blahaj.zone
        link
        fedilink
        English
        18•
        edit-2
        1 year ago

        Universal function approximation - neural networks.

        Auto-differentiation - algorithmic calculation of partial derivatives (aka gradients)

        Backpropagation - when using a neural network (or most ML algorithms actually), you find the difference between model prediction and original labels. And the difference is sent back as gradients (of the loss function)

        Parameter dimensionality - the “neurons” in the neural network, ie, the weight matrices.

        If thats your argument, its worse than Statistics imo. Atleast statistics have solid theorems and proofs (albeit in very controlled distributions). All DL has right now is a bunch of papers published most often by large tech companies which may/may not work for the problem you’re working on.

        Universal function approximation theorem is pretty dope tho. Im not saying ML isn’t interesting, some part of it is but most of it is meh. It’s fine.

    • @embed_me@programming.dev
      link
      fedilink
      English
      2•1 year ago

      Any practical universal function approximation will go against entropy.

    • @hotsox@lemmy.blahaj.zone
      link
      fedilink
      English
      1•1 year ago

      deleted by creator

    • @feedum_sneedson@lemmy.world
      link
      fedilink
      English
      1•1 year ago

      pee pee poo poo wee wee

Science Memes@mander.xyz

!science_memes@mander.xyz

Subscribe from Remote Instance

Create a post
You are not logged in. However you can subscribe from another Fediverse account, for example Lemmy or Mastodon. To do this, paste the following into the search field of your instance: !science_memes@mander.xyz

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

  • !spiders@lemmy.world

Other Mander Communities

Science and Research

  • !academia@mander.xyz
  • !science@mander.xyz
  • !scicomm@mander.xyz

Biology and Life Sciences

  • !abiogenesis@mander.xyz
  • !animal-behavior@mander.xyz
  • !anthropology@mander.xyz
  • !arachnology@mander.xyz
  • !balconygardening@slrpnk.net
  • !biodiversity@mander.xyz
  • !biology@mander.xyz
  • !biophysics@mander.xyz
  • !botany@mander.xyz
  • !ecology@mander.xyz
  • !entomology@mander.xyz
  • !fermentation@mander.xyz
  • !herpetology@mander.xyz
  • !houseplants@mander.xyz
  • !medicine@mander.xyz
  • !microscopy@mander.xyz
  • !mycology@mander.xyz
  • !nudibranchs@mander.xyz
  • !nutrition@mander.xyz
  • !palaeoecology@mander.xyz
  • !palaeontology@mander.xyz
  • !photosynthesis@mander.xyz
  • !plantid@mander.xyz
  • !plants@mander.xyz
  • !reptiles and amphibians@mander.xyz

Physical Sciences

  • !astronomy@mander.xyz
  • !chemistry@mander.xyz
  • !earthscience@mander.xyz
  • !geography@mander.xyz
  • !geospatial@mander.xyz
  • !nuclear@mander.xyz
  • !physics@mander.xyz
  • !quantum-computing@mander.xyz
  • !spectroscopy@mander.xyz

Humanities and Social Sciences

  • !archaeology@mander.xyz
  • !folklore@mander.xyz
  • !history@mander.xyz
  • !old_maps@mander.xyz

Practical and Applied Sciences

  • !exercise-and sports-science@mander.xyz
  • !gardening@mander.xyz
  • !self sufficiency@mander.xyz
  • !soilscience@slrpnk.net
  • !terrariums@mander.xyz
  • !timelapse@mander.xyz

Memes

  • !bushrat_confidential@slrpnk.net
  • !science_memes@mander.xyz

Miscellaneous

  • !answered@mander.xyz
  • !mander@mander.xyz
  • 2.23K users / day
  • 5.18K users / week
  • 10.6K users / month
  • 23.2K users / 6 months
  • 15.3K subscribers
  • 4.81K Posts
  • 123K Comments
  • Modlog
  • mods:
  • Salamander
  • @fossilesque@mander.xyz
  • SciBot
  • @fossilesque@lemmy.dbzer0.com
  • BE: 0.19.3
  • Modlog
  • Legal
  • Instances
  • Docs
  • Code
  • join-lemmy.org